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Introduction 

. .    A common problem that arises  in practice is the comparison of several 

Bernoulli  processes  (or populations) with unknown parameters  Pi,...,p,, 

respectively, where the p.'s denote the success probabilities.    A particular 

realization of this problem is the critical  issue of vendor selection. 

Deming  (1982)  notes the importance of vendor selection in a company's 

efforts  to achieve high quality and productivity.       In his  14 points, 

Deming's point 4 suggests the reduction of the number of suppliers to a 

subset of vendors who can  furnish statistical  evidence of dependable quality. 

Vendor selection involves a consideration of many aspects  --  cost, 

service,  reliability, and quality.    Pettit (1984)  described the approach 

that 3M Corporation uses in the evaluation of prospective suppliers.     It 

consists of evaluating potential  vendors in four areas:    quality, price, 

performance, and facility capabilities.    While quality is explicitly con- 

sidered in this approach,  it is not evaluated in a statistical  sense.    It 

is the intent of this  (present)  article to indicate how statistics  can be 

utilized as one objective evaluation tool   in this  decision setting. 
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is Head of Mathematics Department.    The research of the first author 
was  supported by the Office of Naval  Research Contracts N00014-75-C-0455 and 
N00014-84-C-0167 at Purdue University.     Reproduction in whole or in part is 
permitted for any purpose of the United States  Government. 



Short  Title:     VENDOR SELECTION 

Abstract: ■•  . 

A subset selection rule R^  for binomial  populations  is considered for 

selecting the best of k vendors whose manufacturing processes  have probabilities 

p-|,...,p,   of turning out an item conforming to specifications.     Let X.   denote 

the number of conforming items in a sample of size n from the i-th  vendor 

(success  probability p.),  i  =  l,...,k.    Rule Rr, selects  the i-th vendor if 

and only if X.  >^   max    X.-d, where d is  a nonnegative integer.    Operating 

characteristics of Rp are studied for slippage and equi-spaced parametric 

configurations.    Tables and graphs  relating to selection probabilities and 

expected subset size are presented as well  as  examples  for illustrating ; • 

use of these.    Also,  a rule Rnp is  discussed for selecting vendors who 

are better than a given  (control)   vendor. ,>\ ■ 

Key Words:    Binomial  model, subset selection rules, operating characteristics, 

comparisons with control,  tables,  graphs, numerical  illustrations,  applications 

to vendor selection. 



To formalize the above problem consider k Bernoulli processes, which 

may roprosent the manufacturiny processes of k vendors.  Let \).   denote the 

probability that items manufactured by the ith vendor will conform to 

specifications. The ith vendor we'll denote simply by rr.. Let pr-,-, i-.-i Pr|^-| 

denote the ordered parameters. It is assumed that there is no prior knowledge 

regarding the correct pairings of the ordered and the unordered p.'s. The 

vendors (or processes) are ranked according to the values of p.'s. The vendor 

associated with Pru-i, the largest p., is called the best. 

Let Xi,Xp,...,X, denote the number of conforming items from these 

vendors based on a random sample of n items from each. Our 

interest is to define a statistical procedure based on X-,,...,/, to 

select a nonempty subset of the k vendors with a guarantee of minimum 

probability P* that the best vendor is included in the selected subset. 

Selection of any subset which includes the best is called a correct 

i^^'.rl''^'" (--)• Thus the probability of a correct selection using a rule i-' 

P(CS]R), should satisfy the condition that     ,    . 

P(CSiR) _ P* '    '  ■'    (I) 

whatever be the unknown values of the p-'s.    This condition is generally . 

referred to as the P*-condition.    Obviously,  for a meaningful   problem, 

1/k      P*      1..       . . "   ■ 

Any procedure R that satisfies (1) is a valid procedure. To distinguish 

between valid procedures we need to evaluate criteria that characterize 

effectively procedure performance. One such criterion is the expected value 

of S, the number of populations included in the selected subset. S is known 

as the subset size and it is a positive integer-valued random variable. One 

may also consider the related quantity E(S'), where S' denotes the number of 

non-best populations  included in the selected subset.     Let a-   denote the 



probability of selecting the process associated with Pr-i, i = l,...,k. 

Obviously, a, = PCS.  It is also easy to see that 

E(S) = x^ +...+ a^ 

E(S') = a^ +...+ a^_i. 

(2) 

The a.'s are called the individual selection probabilities. One may also 

consider a criterion which combines E(S) and PCS. Such a criterion, namely, 

E(S)/PCS has been considered in the literature. All these criteria that are 

used to evaluate a valid procedure are called the operating characteristics 

of the procedure.  In our present study, we use the expected subset size 

and the individual selection probabilities. 

The Gupta-Sobel Rule 

Gupta and Sobel (1960) proposed and studied a rule Rg defined as follows. 

Rn:  Select TT . if and only if X. > max X.-d, 
^        ' '  -l<j<k J 

where d = d(k,n,P*) is the smallest nonnegative integer satisfying 

inf P(CS1RJ > P*, 

where Q  = {p|p = (p,,... ,P|^), 0 _£ p^ ^ 1, i = 1,... ,k} is the parameter 

space. Gupta and Sobel (1960) have shown that the infimum on the left- 

hand side of (3)  is attained when p.j =...= p^.    Thus, we evaluate 

P(CSjR )for p^ =...= P|^ = P (say) and rewrite (3) as 

inf   y (")pJ(i-p)"-jdVjp^(i-P)"-^i'-^iiP*. 
0<p<l j=0 ^ y=0 ^ 

There is no known result regarding the value of p for which the infimum 

in (4)  is attained except in the special case of k = 2. When k = 2, the 

infimum is attained for p = 0.5. . ■ •   ■ :• 



When n is large enough to justify normal approximation, then 

equation (4) can be approximated by 

," k-l ^- 
inf    / $"   '[x +  (d +  .5)/(npq)^];p(x)dx =   P* , 

O^p^l   -t» ' 

where q =  1-p.    The infimum of the expression on the left hand side above 

occurs at p =  p-which  gives the approximation  for d as  the solution to 

/ $^'''[x +  (2d+l)/(n^)l^(x)dx =   P*, (5) 
— CO 

where $ and cp denote the cdf and density of a standard normal variable. 

Since d is not necessarily an integer, to implement the procedure we 

simply replace d by the smallest integer greater than or equal to d. 

These values have been tabulated by Gupta and Sobel (1960), for 

k = 2(1)20(5)50 and n = 1(1)20(5)50(10)100(25)200(50)500. Tables 1 

and   2,   extracted from Gupta and Sobel   (1960),  provide the values of 

d for P* =  .90 and  .95,  respectively, for k =  2,5(5)30(10)50,  and 

n =  5(5)50(10)100, 250,500. •    •■      - 

Operating Characteristics 

Let us assume without loss of generality that p, i-. .£ p. . As we 

pointed out earlier, we consider the rule: Select FT- if and only if 

X. >_   max X.-d, where 0 ^ d £ n. The operating characteristics studied 

are the expected subset size and the individual selection probabilities. 

We consider two types of parametric configurations, namely, (1) the 

slippage configuration defined by p=p, = ., .=p, _-, = p,-6 ,0<6<l-p,and 

(2) the equi-spaced parametric configuration defined by p._|_i-p. = 6, 

i = l,...,k-l, 0 <6<(l-p)/(k-l).  For convenience, let 

b(x; n,p) = (")p^(l-p)""^, X = 0,1,...,n 

(6) 

t 
B(t; n,p) = ]  b(x; n,p), t =  0,1,...,n. 

x=0 



xriaSk^.t 

Slippage Configurations .. 

For the configuration (p,p,...,p,p+6), 0 < 6 < 1-p, we get 

n     . u 1      ■ 

X -0 

■■'' a.  =    )  b(x; n,p)B(x+d; n,p+6) [B(x+d; n,p)]'^ , 
x=0 

(7) 

i = l,...,k-l. 

Any specified non-best population has the same probability of being selected and 

we denote this by P(NCS). Also, E(S) = (k-l)a^ + PCS. 

We present tables and graphs for the operating characteristics in the 

case of three slippage configurations. These are given by the following 

pairs of p and • values : 

(I)  p = .50, n = .10,  (II)  p = .75, (S = .05,  (III)  p - .90, '•, - .{,'S. 

Tables 3 through 5 give the values of PCS, P(NCS), and E(S) for 

k = 3,5,10,15; d = 2,3,4,5; and n = 5(5)50 (10)100,250,500 in the case 

of the three configurations I - III. Figure 1 shows the graph of E(S) as 

a function of n for the rule with d = 2 for k = 3,5,10 when the slippage 

configuration is given by p = .90 and 6 = .03. This figure also shows for 

n = 10(10)50, the value of PCS when 6=0, that is, when all the parameters 

are equal to .90. Figures 2 and 3 are graphs of E(S) as a function of n for 

Q = 2,3,4,5, and for k = 3,5, and 10. Figure 2 is for the slippage configuration 

with p = .75 and 6 = .05 and Figure 3 is for the configuration with p = .90 

and 6 = .03. These results and examples are discussed in the next section. 

For sufficiently large n, one can use the normal approximation and 

obtain 



PCS .. /■tk-'[x/'il<Al{iL-:l , ''-•J^-'V/2], 

AM        ^"~^"" 

f   .k-2r,   , d+1/2.  p /      pq ^ ^ 1/2+d-n.S -,   ,   , , 

/npq ^^     '^^     ' /rr(p+6)(q-6T 

i   =  l,...,k-l. 

(8) 

Equi-spaced Parametric Configuration 

For the configuration  (p,p+6,... ,p+(k-l )6),  0 <- 6  --  (l-p)/(k-l), we 

have 

n 
a.  =    y b(x;  n,p+(i-l)6)  n B(x+d;  n,p+(j-l)6),   i  = l,...,k. (9) 

x=0 j^i 

We note that .. is the probability of including the non-best population 

with parameter p + (i-l)6, i = l,...,k-l, and a|^ is the PCS.  For large n, 

the normal approximation yields 

where .. = p+{ i-1 )>■ , i = l,...,k. , 

A Modified Procedure R' 
■ ■ D 

Suppose, the experimenter has the a priori  information that for all 

vendors  the unknown probabilities  p.'s  are at least as  large as  p^ where 

PQ is some specified number and which  in many situations  can be assumed to 

be greater than -p.    Then,  intuitively speaking,  one should be able to  use 

this   information to  reduce d-value,   for fixed values  of P* and n.     This  can 

be  shown  as   follows: " ■ . '. 



In the least favorable case,i.e. when p,  = pp =...= p.   = p, and n is 

large, we have 

P(CS)  =  /    *^-l(x+ d±V2)cp(x)dx, 
-00 /npq 

so that as n -> CO, the infimum of the P(CS) takes place as p ^ ^. Since 

the P(CS)  given above decreases with p for values of p > ■--,  it follows 

that for Pn > p-> 

inf    P(CS)  = / ^^-\x + 2dlL)^(x)dx 
0£P£l -oo /i^ 

<■ y  *      (x + —-^—)cp(x)dx, where q^ =  l-Pn- 

Equating the two integrals above to P* and relabelling the d-value in 

the second integral  as  d*, we have 

d* =  (2d+l)/pQqQ -  1/2 <  d. ■■'■■■''    •   • 

Thus,  for fixed n and P*,  the a priori  constraint on p.'s  leads one to use 

the following modified procedure, 

Rg:    Select the ith vendor if and only if 

X.  >_   max    X. - d*. 
l<j<k    ^ ■ , , 

The modified procedure Rg will result in a smaller value of the expected 

size, E(S), keeping n and P* fixed. If one is willing to give up the saving 

in the value of E(S), one can, for a fixed P*, find a smaller n corresponding 

to this smaller value d* of d. This can be done by interpolation in Tables 

1 and 2.    ,    • ■ .  ' 
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- , , Comparison with a Control       •  "■ 

In some situations, one may want to compare several competing vendors 

with a specific vendor who serves as the control. The goal is to select 

all vendors who are better than (that is, having higher success probability) 

the control vendor. Based on random samples of n items, let X,,   X denote 
1 m 

the numbers of conforming items from m competing vendors and let X. denote 

the number for the control vendor. This problem was studied separately by 

Gupta and Sobel  (1958).    Their rule is 

^BC"    ^^^^^^ t^e vendor with  X.   success  if and only if X.   >  X -D, 

where D = D(m,n,P*)  is the smallest nonnegative integer such that with 

specified probability P* the selected subset will   include all   vendors who 

are better than the control   vendor.     For selected values of m, n,  and P*,  the 

value of D can be obtained from Tables 1  and 2 by setting m = k-1.      .■--■;-^ 

Exampj es^ ■      .        ,   > 

for the purpose of illustrating our rule and the use of the tables, 

let's assume that we have five potential   vendors  for an item.    Our goal 

is  to identify a subset of these in such a manner that the best is  contained 

in the subset with a high probability.    Having  identified this subset, we'll 

then proceed to investigate other nonstatistical   criteria  (such as  facility 

capability,  price, etc.)  upon which to base a final  decision on vendor 

selection.    We note that this approach is  applicable only if test samples of 

the item can be obtained.     For the five candidates, let X.   denote the 

realized value of X.  based on random samples of size n = 30.     (We'll  say 

more about the sample size  choice  later).     Suppose that 

X^   =  27,   X^ =  25,   X3 =  24,  X^ =  22,  and X^ =  28. 



In simple terms,  vendor 1  supplied 30 test items  (chosen at random from its 

production process)  and 27 of the 30 items  conformed satisfactorily to all 

speci fi cations. 

Now we use the statistical  selection procedure R^ with  d =  2 to select 

a subset of these vendors.     (We'll  say more about the choice of d later.) 

The rule  can now be simply stated as:     choose all   vendors  for which 

X.  >_ max  X.-d = 28-2 =  26.    This  results  in the selection of vendors  1  and 5. 

How good is this procedure?    What probabilistic guarantees  do we have with 

its  use?    That's where our tables  and figures  are helpful  as we'll  now 

illustrate. 

In the event that four of the vendors  could produce 90% conforming 

items  (i.e., p =  .90)  and one could produce 93% conforming items,   the 

selection  rule Rn  as we  used  it  (n  =   30,   d =  2,   k =  5)  would select the 

best vendor with probability 0.86 and would retain a nonbest  vendor with 

probability 0.66  (see Table 5).       The expected size of the selected subset 

can be  read from either Table  5   or Figure 1  and is  4(.66)  + 0.86 =  3.5. 

Also  from Figure  1  we  find the probability of making a  correct selection 

(i.e.,  choosing the best vendor to be in the selected subset)  decreases 

to 0.702 as the process  of the best vendor decreases  to 90% conformance -- 

the same as  the other four vendors. 

If these operating characteristics  are not satisfactory  from the 

decision maker's  perspective then alternative choices  for n and/or d should 

be made.    Note, however,  that all  of the probabilities  given  in the preceding 

paragraph were obtainable before any  data was obtained from the  vendors. 

The operating characteristics of the selection procedure are determined 

prior to the actual   data analysis.    Let's  look at how alternative choices of 

n and d can be generated so as  to meet a decision maker's  requirements or 
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preferences. This search and specification is usually conditioned on some 

statement about the parameter configuration over which the probabilistic 

statements should be applicable. 

For example, if we now focus our concern on parameters in a slippage 

configuration with p = .75 and 6 = .05 we can look for a pair (n,d) for 

which PCS is at least a specified number -- say 0.90. Since this criterion 

will yield more than one (n,d) choice we might then choose the pair which 

has the smallest E(S). Consulting Table 4 we generate the options listed 

below: ■ 

__n d^ PCS E(S) 

5 2 .96 
10 3 .96 
15 3 .92 
20 4 .95 

25 4 .93 

30 4 .91 

35 4 .90 
40 5 .93 
45 5 .93 
50 5 .92 

4.65 

4.56 

4.13 

4.32 

4.06 

3.82 

3.62 

3.91 

3.74 

3.60 

It should be noted that because of the  discrete nature of the distribution 

involved,   an  increase  in  n does  not produce necessarily a better option.     In 

this illustration the best option would be n = 50 and d =  5.    That is,  ask 

for a  random sample of 50 items  from each vendor and select those for which 

X.   >_   max    X.  -  5. 
llJiik    J 

Alternatively,  one may want to set an  upper bound for E(S)/k,  the 

expected proportion of populations  selected.     If we set this bound as   .80, 

then we  look  for pairs   (n,d)   for which E(S)_5  x   .80 =  4.     If there are more 



than one such pair with same n, we take the pair for which the PCS is 

11 

maximum. 

Consulting Table 4 again, we have the following options -- the best being 

n = 45 and d = 5. 

E(S)       PCS 

10 2 3.89 .87 

15 2 3.37 .81 

20 3 3.77 .88 

25 3 3.48 .86 

30 4 3.82 .91 

35 4 3.62 .90 

40 5 3.91 .93 

45 5 3.74 .93 

50 5 3.60 .92 

It is possible to use other criteria for choosing the pair (n,d). 

If we  feel  that the true parametric configuration can in some sense be 

described by one of two possible slippage configurations  given by,  say, 

p =  .75,  6 =   .05 and p =   .90,  6 =  .03,  then we  can  choose the pair  (n,d) 

that  controls  the PCS or E(S)  at given  levels  for both  configurations. 

Summary and Concluding Remarks 

In this  paper we have presented two statistical   selection  rules 

applicable to the important problem of vendor (or process)  selection. 

The first rule is  appropriate for the selection of a subset to contain 

the best vendor with a preassigned probabilistic guarantee.    The second 

rule is  directed towards selection of a subset to contain all   vendors better 

than a standard -- again with a specified probabilistic guarantee.    Addi- 

tionally we've indicated how prior knowledge on vendor quality  level   can be 

explicitly incorporated in the form of inequality  constraints on the 

binomial  probability parameters.     Such  incorporation, where applicable, 

can  reduce substantially the expected subset size while preserving the stated 

minimum probability of making a  correct selection. • 
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liiiplGiiieriLdtion of  '>u(,h  procodures  rof]uiros  several   choices  by  the 

.iti.ilyst.     That  is,   in a sense,  similar to consideration   involved  in 

statistical  hypothesis  testing.     In the latter case the analyst  determines    '\ 

a critical   region  (or rejection  region)  and sample size by examining 

operating characteristics  (e.g., Type I and Type II errors) and choosing 

combinations appropriate for the application.    With  respect to the selection 

procedures herein discussed the analyst must choose the constant d to be 

used with the rule R„ and the sample size for each  vendor (or process).   . 
D 

Once the number of vendors (k) is specified the choice of d and n 

depends in turn on operating characteristics of the selection procedure. 

(For rule R^^ the choice is D and n). We recommend the analyst first 

specify a P* value which is the minimum probability of a correct selection 

(the analog of Type I error). This specification can generate many (d,n) 

combinations. At this point the analyst should specify an upper bound on 

the expected subset size for a parametric configuration meaningful for the 

application (the analog of Type II error). Then referring to the figures * 

and tables given here, determine a (d,n) choice which achieves the requirements 

on both the probability of a correct selection and the expected subset size. 

In situations where these tables and figures are not sufficient to represent 

an application, the reader is referred to the additional references. New 

calculations may be required using the formulae given. 

Once the d value and sample size n have been determined the data 

analysis proceeds by random sampling and testing of n items from each 

vendor (process) and then selecting a subset according to the rule R with 
B 

d as the constant. The resultant subset of vendors, chosen on the basis of 

a statistical comparison of quality, can then be examined further on other 

important aspects such as price, facilities, delivery, etc. 

Statistical methods can play a significant role in vendor selection. 

Those described here are applicable only to those situations where vendors 
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are currently producing the product of interest.    Since the rules  are data 

dependent,  they would not be applicable for decision situations  involving 

new products  currently not being produced. 

We've illustrated here techniques applicable to attribute data 

represented by the binomial  model.    Similar procedures  have been developed 

for continuous  measurement data emanating  from a wide  variety of statistical 

distributions  such as  normal,  gamma,  and exponential.    A good discussion of 

these many rules  can be found in the book by Gupta and Panchapakesan  (1979). 

Distribution-free  (nonparametric)   rules have also been  developed and can be 

applied when only ordinal   information  is obtained about the vendors   (or 

processes).    A review of such procedures  can be found in Gupta and McDonald 

(1982). 
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Table 1.  Values of d for implementing the rule Rg for selecting the best 

of k binomial populations or the rule Rgp for selecting from k-1 binomial 

populations that are better than an unknown control. 

P* = .90 

\k 
n ^N, 2 5 10 15 20 25 30 40 50 

5 2 3 3 3 4 4 4 4 4 

10 3 4 5 5 5 5 5 6 6 

15 4 5 6 6 6 7 7 7 7 

20 4 6 7 7 7 8 8 8 8 

25 5 6 7 8 8 8 9 9 9 

30 5 7 8 9 9 9 9 10 10 

35 5 8 9 9 10 10 10 11 11 

40 6 8 9 10 10 11 11 11 12 

45 6 9 10 11 11 11 12 12 12 

50 6 9 11 11 12 12 12 13 13 

60 7 10 12 12 13 13 13 14 14 

70 8 10 12 13 14 14 14 15 15. 

80 8 12 13 14 15 15 15 16 16 

90 9 12 14 15 16 16 16 17 17 

100 9 13 15 16 16 17 17 18 18 

250 14 21 24 25 26 27 27 28 29 

500 20 29 33 35 37 38 39 40 41 

The above values of d were computed by  using the normal  approximation as 

given in equation  (5). 



1.6 

Table  2.      Values of d for implementing the rule R,,  for selecting the best 

of k binomial  populations or the rule R„^ for selecting from k-1  binomial 

populations that are better than an  unknown control. 

P* =  .95 

\^k 
2 5 10 15 20 25 30 40 50 

• 5 3 3 4 4 4 4 4 4 5. 

10 4 5 5 6 6 6 6 6 § 

15 5 6 7 7 7 7 8 8 ^ 

20 5 7 8 8 8 8 9 9 9 

25 6 8 8 9 9 9 10 10 10 

30 6 8 9 10 10 10 n 11 11 

35 7 9 10 11 11 11 11 12 12 

40 7 10 11 11 12 12 12 13 13 

45 8 10 11 12 12 13 13 13 14 

50 8 11 12 13 13 13 14 14 14 

60 9 12 13 14 14 15 15 15 16 

70 10 13 14 15 16 16 16 17 17 

80 10 14 15 16 17 17 17 18 18 

90 11 14 16 17 18 18 18 19 19 

100 12 15 17 18 19 19 19 20 20 

250 18 24 27 28 29 30 31 32 32 

500 25 34 38 40 42 43 43 45 46 

The above  values of d were computed by using the normal  approximation 

as  given in equation  (5). 
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Table    3.     PCS  (top line),  P(NCS)   (middle line)  and E(S)   (bottom line) 

Slippage Configuration:     p = 0.50    delta = 0.10 

k = 3 5 10 15 I 
i 

0 = 2 3 4 ^ 2 3 4 5 2 3 4 5 2 3 4 5  1 
n 

r 
0,95 
0.87 
2.69 

0.99 
0.97 
2.93 

1 .00 
1 .00 
2.09 

1 .00 
1 .00 
3.00 

0.92 
0.82 
4. 19 

0.99 
0 95 
4 ,80 

1 CO 
0.99 
4.98 

1 ,00 
1 ,00 
5,00 

0.87 
0.74 
7 .56 

0.97 
0.93 
9.33 

1 .00 
0.99 
9,92 

1 ,00 
1 00 

10. GO 

0,83 
C,7C 
10,60 

0.96 
0 91 
13 .69 

1 .00 
0.99 
14 ,83 

' "1 

i.oo! 
1 00 i 

15.00 

10 
0.90 
0.G9 
2.29 

0.96 
0.84 
2.64 

0.99 
0.93 
2 .85 

1 .00 
0.98 
2.95 

0.84 
0.62 
3.30 

0,93 
0.79 
4 . 10 

0.98 
0.91 
4.61 

0.99 
0.97 
4 ,87 

0.75 
0.51 
5.33 

0.89 
0.71 
7.32 

0.96 
0.87 
8 77 

0.99 
0.95 
9 . 5C 

0,69 
0.45 
6 .98 

0 86 
0 67 
10. 17 

0,95 
0.84 

12 68 

0.93 
0 94 
14,14 

15 
0.88 
0.53 
2 .04 

0.94 
0 73 

2.39 

0.98 
0.84 
2.66 

0.99 
0.92 
2.83 

0.81 
0.50 
2.81 

0.90 
0.66 
3.56 

0.96 
0.80 
4 . 16 

0.98 
0.90 
4 ,57 

0.70 
0.40 
4 .26 

0.84 
0,57 
5.97 

0.92 
0.73 
7.51 

0 97 

8 .66 

0.64 
0.34 
5.37 

0 79 
0.51 
7 .99 

0,90 
0 69 
10,51 

0,96 
0,83| 
12,51 

20 
0,87 

0.50 
1 .88 

0.93 
0.64 

2.20 

0.97 
0.75 
2.47 

0.98 
0.85 
2 .68 

0.80 
0.43 
2.50 

0.88 
0.57 
3. 16 

0.94 
0.70 
3.76 

0.97 
0.81 
4.23 

0.69 
0.33 
3.63 

0 81 
0,47 
5.07 

0.89 
0.62 
6.51 

0.95 
0.76 
7.75 

0.62 
0.27 
4 .47 

0. 76 
0.42 
6.62 

0,86 
0,57 
B.88 

0,9 3 
0,72 
10 95 

25 
0.87 
0 . 44 
1 .75 

0.92 
0.56 
2 ,05 

0.96 
0.68 
2.32 

0.98 
0.78 
2 .54 

0.79 
0.37 
2.28 

0.87 

0.50 
2 .87 

0.93 
0.62 
3.43 

0.96 
0,74 
3 .92 

0.68 
0.28 
3.21 

0.79 
0.41 
4 .45 

0.58 
0 54 
5.74 

0.93 
0.67 
6 .96 

0.62 
0.23 
3 .88 

0.74 

0.35 
5.69 

084 
0.49 
7.68 

0,91 
0,62 
9,f;Si 

30 
0.87 
0 40 
1 . 66 

0.92 
0.50 
1 .93 

0.95 
0.61 
2. 18 

0.98 
0.71 
2 .40 

0.79 
0.33 
2. 12 

0.87 
0.44 
2.64 

0.92 
0,56 
3, 16 

0.96 
C.G7 
3.63 

0.68 
0.25 
2.91 

0.79 
0. 36 
3 .98 

0.86 
0 48 
5 , 14 

0.92 
0.60 
6.30 

0.62 
0.20 
3.47 

0,73 
0,31 
5.01 

0.83 
0.42 
6 77 

0,9J 

0,55 
8 60 

35 

0.87 

0. 36 
1 .59 

0.92 
0.46 
1 . 83 

0.95 
0,56 
2.07 

0.97 

0.65 
2.28 

0.80 
0.30 
1 .99 

0.87 
0 40 
2 45 

0,92 
0,50 
2 ,93 

0.95 
0.61 
3 . 39 

0.69 
0.22 
2 68 

0.78 
0,32 
3.62 

0, 80 
0 42 
4 ,60 

0.91 
C.^4 
5 . 73 

0.62 
0 18 
3. 16 

0 73 
0, 27 
4 ,50 

0,82 
0 37 
6 . 06 

0,88 
0 49 1 
7 , 73 

40 
0.88 
0.32 
1 .52 

0.92 
0.41 
1 .75 

0.95 
0.51 
1 .97 

0.97 
0 60 
2. 17 

0.80 
0.27 
1 .88 

0,87 
0.36 
2.30 

0.91 
0.46 
2 .74 

0.95 
0.56 
3. 17 

0 70 
0.20 
2 .49 

0 78 
0.28 
3.33 

0, 85 
0.38 
4 . 27 

0.91 
0.48 
5.26 

0,63 
0. 16 
2 ,92 

0,73 
0,24 
4. 10 

0.81 
0.33 
5.49 

0,88 
0, 44 
7 ,01 

45 
0.88 
0.30 
1 . 47 

0.92 
0 33 
1 .68 

0.95 
0.45 
1 .83 

0.97 
0.55 
2.08 

0.81 
0.25 
1 .79 

0 ni 
0.33 
2 . 10 

0.91 
0.42 
2.58 

0.95 
0.51 
2.98 

0.71 
0. 18 
2.34 

0.79 
0.26 
3.09 

0.85 
0. 34 
3 .94 

0 ^30 
0.44 
4 .85 

0,64 
0,15 
2 , 72 

0-73 
0.22 
3.77 

0.81 
0.30 
5.02 

0,3-" 
0, 33 
6,40 

50 
0.89 
0.27 
1 .43 

0.92 
0.35 
1 .61 

0.95 
0. 43 
1 .80 

0.97 
0.51 
1 .99 

0.82 
0.23 
1 .72 

0.07 
0.30 
2 .07 

0.91 
0.38 
2 .44 

0.94 
0.47 
2.81 

0.72 
O. 17 
2.22 

0.79 
0.23 
2 .89 

0.85 
0.31 
3.67 

O.iJO 
0.40 
4,51 

0,65 
0 14 
2 ,56 

0.74 
0 20 
3,50 

0.81 
0.2-7 
J 63 

0 87 
0- 35 
5 &J 



k= 

Table 3    (Continued).     PCS  (top line),  P(NCS)   (middle line)  and E(S)   (bcttom line) 

Slippage Configuration:     p = 0.50    delta = 0.10 

5 3 10 IS 

d=2 

n 

60 

70 

0.90 0.93 0.95 0.97 
0.23 0.29 0.36 0.44 
1.36  1.51   1.68 1.84 

0.83 0.88 0.92 0.94 
0.19 0.25 0.32 0.40 
1.60 1.89 2.21   2.54 

0.91  0.93 0.95 0.97 10.85 0.89 0.92 0.95 
0.20 0.25  0.31  0.38 
1.30 1.44 1.58 1.72 

0.92 0.94 0.96  0.97 
0.17 0.22 0.27 0.32 
1.26 1.37   1.49 0.62 

i 0.93 0.95 0.96 0.97 
90 i 0.15 0.19 0.23 0.28 

1.22 1.32 1.42 1.54 

100 

250 

500 

0.93 0.95 0.96 0.98 
0.13 0.16 0.20 0.25 
1.19 1.28 1.37 1.47 

0.99 0.99 0.99 0.99 
0.02 0.02 0.03 0.04 
1.03 1.04 1.05 1.07 

1.00  1.00 1.00 1.00 
0.00 0.00 0.00 0.00 
1.00  1.00 1.00 1.00 

0.17 0.22 0.28 0.34 
1.51   1.76 2.02  2.31 

0.86 0.90 0.93 0.95 
0.14 0.19 0.24 0.29 
1.44 1.65 1.88 2.13 

0.88 0.91 0.93 0.95 
0.12 0.15 0.21 0.26 
1.38 1.56 1.76  1.97 

0.89 0.92 0.94 0.96 
0.11 0.14 0.18 0.22 
1.33 1.48 1.65 1.85 

0.98 0.98 0.99 0.99 
0.02 0.02 0.03 0.04 
1.05 1.07 1.10 1.13 

1.00 1.00 1.00 1.00 
0.00 0.00 0.00 0.00 
1.00  1.00  1.01   1.01 

0.73 0.80 0.86 0.90 
0.14 0.20 0.26 0.34 
2.01   2.57 3.22 3.93 

0.76 0.81 0.86 0.90 
0.12 0.17 0.22 0.29 
1.86  2.33 2.88 3.49 

0.78 0.83 0.87 0.91 
0.11 0.15 0.19 0.25 
1.74 2.14 2.61   3.13 

0.79 0.84 0.88 0.91 
0.09 0.13 0.17 0.21 
1.64 1.99 2.39 2.84 

0.81 0.86 0.89 0.92 
0.08 0.11 0.15 0.19 
1.56  1.86  2.21   2.60 

0.96 0.97 0.97 0.98 
0.02 0.02 0.03 0.03 
1.10  1.14 1.20 1.26 

1.00 1.00 1.00 1.00 
0.00 0.00 0.00 0.00 
1.01 1.01   1.01   1.02 

0.67 0.75 0.82 0.87 
0.12 0.17 0.23 0.30 
2.30  3.07 3.99 5.05 

0.70 0.76 0.82 0.87 
0.10 0.14 0.19 0.25 
2.11   2.75 3.53 4.43 

88 
0.09 0.12 0.17 0.22 " 
1.95  2.50 3.16 3.93 

0.74 0.80 0.85 0.88 
0.08 0.11 0.14 0.19 
1.83 2.30 2.87 3.53 

0.76 0.81 0.86 0.89 
0.07 0.09 0.13 0.16 
1.73 2.14 2.63 3.20 

0.94 0.95 0.96 0.97 
0.01 0.02 0.02 0.03 
1.13 1.20 1.28 1.37 

1.00 1.00 1.00 1.00 
0.00 0.00 0.00 0.00 
1.01 1.01   1.02 1.02 

For values of n >_ 60, the values  in the above table were computed by using 

the normal  approximations given in    (8). 
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Table 4.  PCS (top line), P(NCS) (middle line) and E(S) (bottom line) 

Slippage Configuration: p = 0.75 delta = 0.05 

k = 3 
T  

5 10 15 

d = 2 3 4  1 5 2 3 4 5 O 3 4 5 2 3 ' 5 

n 

5 
0 97 
0 04 
2 BG 

1 .00 
0.99 
2 98 

1 .00 
1 .00 
3.00 

1 .00 
1 .00 
3.00 

0.96 
0.92 
4 . G5 

1 -00 
0.99 
4 .95 

1 .00 
1 .00 
5.00 

1 .00 
1 .00 
5.00 

0.95 
0 90 
9 .08 

0.99 
0.99 
9.86 

1 .00 
1 .00 
9.99 

1 .00 
1 .00 

10.00 

0.94 
0,90 
13 ,52 

0.99 
0,98 
14 . 78 

1 00 
1 .00 

14 .99 

1 .00 
1 ,oo 

15,00 

10 
0 'J 1 
0.8 1 
2.54 

0 97 
0 93 
2.83 

0 99 
0.98 
2.95 

1 .00 
1 .00 
2 99 

0.ft7 
0. 75 
3.89 

0 96 
0.90 
4.56 

0.99 
0.97 
4.87 

1 00 
0.99 
4 .97 

0 80 
0.68 
G .89 

0.93 
0.86 
8.69 

0.98 
0.96 
9.59 

1 .00 
0.99 
9.90 

0.77 
0.63 
9.63 

0.92 
0.84 
12.65 

0.98 
0 95 
14 .23 

1 .00 
0.99 

14 .82 

15 
0.87 
0.72 
2.31 

0.95 
0.85 
2.65 

0.96 
0.93 
2.85 

0.99 
0.98 
2.95 

0.81 
0.64 
3.37 

0.92 
0 80 
4 . 13 

0.97 
0.91 
4.61 

0.99 
0,97 
4.85 

0.72 
0.54 
5.57 

0.87 
0.73 
7.47 

0.95 
0.87 
8.79 

0.98 
0.95 
9.52 

0.67 
0.48 
7.45 

0.84 
0.69 
10.52 

0 93 
0 85 

12 79 

0.98 
0.94 
14.10 

20 
0.85 
0.S5 
2. 15 

0.93 
0.78 
2.49 

0.97 
0.88 
2.73 

0.99 
0.94 
2.88 

0.77 
0.56 
3.02 

0.88 
0.72 
3.77 

0.95 
0.84 
4.32 

0.98 
0.92 
4.68 

0.67 
0 45 
4 75 

0.82 
0.63 
6.52 

0.91 
0.79 
7 .98 

0.96 
0.89 
8.98 

0.61 
0.40 
6 . 16 

0,77 
0.58 
8.93 

0,89 
0 75 

1 1 .36 

0.95 
0.87 
13.10 

25 
0.83 
0 59 
2 .02 

0.31 
0. 73 
2 . 36 

0.96 
0.83 
2.62 

0.98 
0.91 
2 . 79 

0.75 
0.51 
2.77 

0.86 
0.66 
3.48 

0.93 
0.78 
4 .00 

0.97 
0.88 
4 .47 

0.63 
0.40 
4 . 19 

0.78 
0.56 
5.80 

0.88 
0.71 
7.26 

0.94 
0.83 
8.39 

0.57 
0. 34 
5.31 

0.73 
0.50 
7 .77 

0.85 
0.66 
10 14 

0.93 
0 80 

12 .07 

30 
0.82 
0.55 
1 .92 

0.90 
0 68 
2 .25 

0.95 
0. 78 
2.51 

0.97 
0.87 
2.71 

0.73 
0.46 
2.58 

0.84 
0 GO 
3.25 

0.91 
0.73 
3 .82 

0.95 
0.83 
4 .27 

0.61 
0. 35 
3. 79 

0.75 
0. 50 
5. 25 

0.85 
0 64 
5 .65 

0.92 
0.77 
7.84 

0.5b 
0, 30 
4 .72 

0. 70 
0.44 
6,91 

0 82 
0, 59 
9,13 

0.90 
0.73 
11.11 

35 
0.82 
0.51 
1 .85 

0 83 
0.63 
2. 16 

0.94 
0.74 
2.42 

0.97 
0.83 
2.63 

0.72 
0.43 
2.43 

0.82 
0.56 
3 05 

0.90 
0.68 
3.62 

0.34 
0.78 
4 .08 

0.60 
0.32 
3.49 

0.73 
0.45 
4 .82 

0.83 
0.59 
6 . 15 

0.90 
0.71 
7 ,34 

0.53 
0. 27 
4 . 23 

0,67 
0..iO 
6.24 

0, 79 
0.54 
8.31 

0,88 
0.67 
10.26 

40 
0.81 
0.48 
1 .78 

0.88 
0.60 
2.08 

0.93 
0.70 
2 .33 

0.96 
0.79 
2.55 

0.72 
0.40 
2,31 

0.81 
0.52 
2.89 

0.89 
0.64 
3 .44 

0.93 
0.74 
3.91 

0.59 
0.30 
3.25 

0.71 
0.42 
4 .47 

0.81 
0.54 
5.72 

0.89 
0.67 
6.89 

0.52 
0.24 
3 .94 

0.6G 
0. 36 
5.71 

0 77 
0 49 
7.63 

0.86 
0.62 
3.51 

45 
0.81 
0.46 
1 .73 

0.88 
0.55 
2.01 

0.92 
0.67 
2.26 

0.96 
0.76 
2.47 

0.72 
0.37 
2.21 

0.81 
0.49 
2.76 

0.88 
O.GO 
3.28 

0.93 
0.70 
3.74 

0.59 
0.27 
3.06 

0.70 
0.39 
4 . 18 

0.80 
0.51 
5.35 

0.88 
0.62 
6,49 

0.52 
0. 23 
3 67 

0.64 
0.33 
5.28 

0.T5 
0 . 4t 
7.07 

0 84 
0.57 
8.87 

50 
0.81 
0.43 
1 .58 

0 87 
0.54 
1 .94 

0.92 
0.64 
2 . 19 

0.95 
0.73 
2 .40 

0.71 
0.35 
2. 13 

C.80 
0.46 
2 64 

0.87 
0. 57 
3. 14 

0.92 
0.67 
3.60 

0.58 
0.26 
2.90 

0.70 
0.36 
3.93 

0.79 
0.47 
5.04 

0.86 
0.59 
6. 13 

0.51 
0.21 
3.45 

0,63 
0.31 
4 .93 

0.74 
0.42 
6.59 

0.8 3 
0.53 
8.30 
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Table 4 (Contln'jed). PCS (top l^ne), ^(NCS) (middle line) and E(S) (bottom line) 

Slippage Configuration: p = 0.75 delta = 0.05 

1 

k=               3 5 10 15 

d=2 ■^ 0 4 5 2 0 4 5 o o 
o 4 5 2        3        4 5 

n 

60 

70 

80 

90 

100 

250 

500 

0.81   0.87 0.91   0.94 
0.39 0.48 0.58 0.66 
1.59  1.83 2.06  2.27 

0.81  0.87 0.91   0.94 
0.36 0.44 0.53 0.61 
1.53  1.75  1.96  2.16 

0.82 0.87 0.91   0.94 
0.33 0.41   0.49 0.57 
1.48 1.68 1.88 2.07 

0.82 0.87 0.90 0.93 
0.31  0.38 0.45 0.53 
1.44 1.63 1.81   1.99 

0.83 0.37 0.91   0.93 
0.29 0.35 0.42 0.49 
1.41   1.58 1.75  1.92 

0.90 0.92 0.94 0.95 
0.13 0.15 0.18 0.21 
1.16  1.22 1.29  1.37 

0.97 0.97 0.98 0.93 
0.04 0.05 0.06 0.07 
1.05  1.07  1.09  1.11 

0.70 0.78 0.85 0.90 
0.31  0.41  0.50 0.60 
1.95 2.41   2.85 3.30 

0.71  0.78 0.85 0.89 
0.29 0.37 0.46 0.55 
1.86  2.26  2.68 3.08 

0.71  0.78 0.84 0.89 
0.27 0.34 0.42 0.50 
1.73 2.15 2.52 2.90 

0.72 0.79 0.84 0.89 
0.25 0.31  0.39 0.47 
1.71   2.05 2.40 2.75 

0.73 0.79 0.84 0.88 
0.23 0.29 0.35 0.43 
1.66 1.96 2.28 2.62 

0.84 0.87 0.S9 0.91 
0.11  0.13 0.15 0.18 
1.26 1.38 1.51   1.65 

0.94 0.95 0.96 0.95 
0.04 0.04 0.05 0.06 
1.08 1.12 1.16  1.20 

0.56 0.65 0.75 0.83 
0.22 0.30 0.40 0.50 
2.55 3.41  4.35 5.34 

0.57 0.66 0.75 0.82 
0.20 0.28 0.35 0.45 
2.38 3.14 3.99 4.88 

0.57 0.55 0.74 0.81 
0.19 0.25 0.33 0.41 
2.25 2.93 3.59 4.51 

0.58 0.67 0.74 0.81 
0.17 0.23 0.30 0.38 
2.14 2.75  3.45 4.20 

0.59 0.67 0.74 0.80 
0.15 0.22 0.28 0.35 
2.05 2.61   3.24 3.93 

0.74 0.78 0.82 0.85 
0.08 0.10 0.12 0.15 
1.44 1.65 1.90 2.16 

0.89 0.91   0.92 0.93 
0.03 0.04 0.04 0.05 
1.15 1.22 1.30  1.39 

0.48 0.59 0.69 0.78 
0.18 0.25 0.34 0.44 
2.94 4.1!   5.48 6.97 

0.49 0.59 0.58 0.77 
0.15 0.23 0.31   0.39 
2.72 3.75 4.96 6.30 

0.49 0.59 0.53 0.76 
0.15 0.21   0.28 0.36 
2.55 3.47 4.55 5.75 

0.50 0.59 0.68 0.75 
0.14 0.19 0.25 0.33 
2.41   3.24 4.21   5.30 

0.51  0.60 0.58 0.75 
0.13 0.18 0.23 0.30 
2.30 3.05 3.93 4.93 

0.58 0.72 0.77 0.81 
0.06 0.08 0.10 0.12 
1.55 1.84 2.17 2.55 

0.85 0.87 0.89 0.91 
0.02 0.03 0.04 0.04 
1.20  1.30  1.41   1.53 

For values of n >, 50, the values in the above table were computed by using 

the normal approximations given in (8). 
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Table    5.    PCS  (top line),  P(NCS)   (middle line)  and E(S)   (bottom line) 

Slip|)d(jo  ConfitjuruLion:     p       0.90     delta  -  0.03 

1 
3 5 10 15 

a = : 3 4 5 2 3 4 5 - 3 4 5 2 3 4 5 

n 

1 00 
0 '<9 
2 .98 

1 .00 
1 .00 
3.00 

1 .00 
1 .00 
3.00 

1 .00 
1 .00 
3 00 

1 .00 
0.99 
4 .96 

" 00 
1 00 
5,00 

1 .00 
1 .00 
5.00 

1 .00 
1 .00 
5.00 

1 .00 
0.99 
9.92 

1 .00 
1 .00 

10.00 

1 .00 
1 .00 

10.00 

1 .00 
1 .00 

10.00 

1 .00 
0.99 
14.88 

1 .00 
1 .00 

14 . £9 

1.00  1.00 
1 00  1.00 

15 00 15.00 

10 
0.98 
0.95 
2.88 

1 .00 
0.99 
2.98 

1 .00 
1 .00 
3.00 

1 .00 
1 .00 
3.00 

0.98 
0.94 
4 .73 

1 .00 
0.99 
4.95 

1 .00 
1 .00 
4.99 

1 .00 
1 .00 
5.00 

0.97 
0.93 
9.35 

1 .00 
0.99 
9.88 

1 .00 
1 .00 
9.99 

1 .00 
1 .00 

10.00 

0.97 
0.93 
13.99 

1 .00 
0.9° 

14 .82 

1.00  1.00 
1 CO  1.00 

14.98 15.00 

15 
0.96 
0.89 
2.74 

0.99 
0.97 
2.93 

1 .00 
0.99 
2.98 

1 .00 
1 .00 
3.00 

0.94 
0.86 
4 .38 

0.99 
0.96 
4 .82 

1 .00 
0.99 
4 .96 

1 .00 
1 .00 
4.99 

0.93 
0.83 
8.39 

0.98 
0.95 
9.52 

1 . 00 
0.99 
9.89 

1 .00 
1 .00 
9.98 

0.92 
0.82 
12 .40 

0,98 
0.95 
14.23 

1.00  1.00 
0.99  1.00 
14.82 14.97 

20 
0.94 
0.83 
2.60 

0.98 
0.94 
2.86 

1 .00 
0.98 
2 .96 

1 .00 
1 .00 
2 99 

0.91 
0.78 
4 .05 

0.38 
0.92 
4 .64 

0.99 
0.97 
4.89 

1 .00 
0.99 
4 .97 

0.87 
0,73 
7.44 

0.96 
0.89 
8.99 

0.99 
0.97 
9.68 

1 .00 
0.99 
9.92 

0.86 
0.70 
10.71 

0.96 
0.88 
13.28 

0.99  1.00 
0.96  0.99 
14.45 14.86 

25 
0.92 
0.77 
2.47 

0.98 
0.9O 
2 .77 

0.99 
0.96 
2 .92 

1 .00 
0 99 
2.98 

0.88 
0.72 
3. 75 

0.96 
0.87 
4 .44 

0.99 
0.95 
4.79 

1 .00 
0.98 
4 93 

0.63 
0.65 
6.66 

0.94 
0.83 
8 41 

0.98 
0.93 
9 . 38 

1 .00 
0.98 
9.00 

0 . 80 
0.61 
9.35 

0.93 
0.81 
12 24 

0.98  1.00 
C 92  0.97 
13.90 14 G4 

30 
0.91 
0.73 
2 36 

0.97 
0.8G 
2 .69 

0.99 
0.94 
2 .87 

1 .00 
0.98 
2 .95 

0.86 
0.66 
3 .52 

0.95 
0.82 
4.24 

0.98 
0.92 
4 .67 

1 .00 
0.97 
4 .88 

0.80 
0.58 
6.04 

0.92 
0.77 
7 .86 

0.97 
0.89 
9 .02 

0.99 
0.96 
9.62 

0.75 
0.54 
8 . 30 

0.90 
0. 74 

1 1 . 28 

0.97  0.99 
0.88  0.95 
13.26 14.31 

35 
0.90 
0.68 
2.27 

0.9G 
0.82 
2.61 

0.99 
0.91 
2.82 

1 .00 
0.96 
2 92 

0.85 
0.62 
3.31 

0.93 
0.78 
4 .05 

0.98 
0.89 
4 .54 

0.99 
0.95 
4 .80 

0.77 
0.53 
5.53 

0.90 
0.72 
7.36 

0.96 
0.85 
8.65 

0.93 
0.94 

9.40 

0. 73 
0.48 
7 .47 

0.88 
0.6S 
10.42 

0 35  0.98 
0.83  0.92 

12 60 13.92 

40 
0.89 
0.65 
2. 19 

0.95 
0.79 
2.53 

0. 98 
0.89 
2.76 

0.99 
0.95 
2.89 

0.63 
0.58 
3. 14 

0.92 
0.74 
3.88 

0.97 
0.86 
4 .40 

0.99 
0.93 
4.72 

0.75 
0.49 
5. 12 

0.68 
0.67 
6.90 

0.95 
0.81 
8.28 

0.98 
0.91 
9. 16 

0.70 
0.44 
6.81 

0.85 
0.G3 
9.66 

0.94  0.98 
0.79  0.89 
11,95 13.47 

45 
0.88 
0.62 
2.11 

0.95 
0.76 
2.46 

0.98 
0.86 
2.70 

0.99 
0.93 
2.85 

0.82 
0.54 
2 . 99 

0.91 
0.70 
3.72 

0.96 
0.83 
4 .27 

0.99 
0.91 
4.63 

0.73 
0.45 
4.77 

0.86 
0.63 
6.50 

0.94 
0.77 
7.91 

0.98 
0.88 
8.89 

0.68 
0.40 
6.27 

0.83 
0.58 
8.99 

0,92  0.97 
0.74  0.86 
11.32 13.00 

50 
0.88 
0.59 
2.05 

0.94 
0.73 
2.39 

0.97 
0.83 
2 .64 

0.39 
0.91 
2.81 

0.81 
0.51 
2.85 

0.90 
0.67 
3.58 

0.96 
0.80 
4. 14 

0.98 
0.89 
4.53 

0.72 
0.42 
4.48 

0.85 
0.59 
6. 14 

0.93 
0.74 
7.57 

0.97 
0.85 
8.62 

1 

0.67 
0.37 
5.82 

0.81 
0.54 
8.41 

0 91  0.9G 
0.70  0.83 
10.74 12.53 
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Table  5.  (Continued).     PCS  (top line),  P(NCS)   (middle line)  and E(S)   (bottom line) 

Slippage  Configuration:     p = 0.90    delta = 0.03 

d=2 

n 
0.86 0.93 0.96 0.98 

60    0.53 0.66 0.77 0.86 
1.91 2.24 2.51 2.71 

0.86 0.92 0.96 0.98 
70    0.49 0.61   0.73 0.82 

1.83 2.14 2.41   2.62 

0.86 0.92 0.95 0.98 
80    0.45 0.57 0.68 0.78 

1.76 2.06 2.32 2.53 

0.86 0.91   0.95 0.97 
90    0.42 0.53 0.64 0.74 

1.70  1.98 2.23 2.45 

0.86 0.91  0.95 0.97 
100    0.40 0.50 0.61   0.70 

1.65  1.91   2.16  2.38 

0.90 0.93 0.95 0.97 
250    0.19 0.24 0.29 0.35 

1.28 1.40  1.53  1.67 

0.96  0.97 0.97  0.98 
JOO    0.07  0.09  0.11   0.13 

1. in   1.11,   i. !')   1.;'!, 

0.77 0.87 0.93 0.97 
0.44 0.58 0.71 0.82 
2.54 3,20 3.79 4.25 

0.77 0.86 0.93 0.96 
0.41 0.54 0.66 0.77 
2.39 3.01  3.58 4.06 

0.77 0.86 0.92 0.96 
0.38 0.50 0.62 0.73 
2.27 2.84 3.39 3.87 

0.77 0.85 0.91 0.95 
0.35 0.46 0.58 0.69 
2.17 2.70 3.22 3.70 

0.77 0.85 0.91 0.95 
0.33 0.43 0.54 0.55 
2.08 2.58 3.08 3.54 

0.84 0.88 0.91 0.94 
0.16 0.21 0.26 0.32 
1.47  1.70 1.94 2.20 

0.92 0.94 0.95 0.97 
0.06 0.08 0.10 0.12 
1.18 1.26  1.31)   1.4'.) 

10 

0.64 0.78 0.88 0.94 
0.33 0.47 0.62 0.75 
3.61  5.04 6.46 7.69 

0.64 0.77 0.86 0.93 
0.30 0.43 0.57 0.69 
3.34 4.63 5.96 7.18 

0.63 0.76 0.85 0.92 
0.28 0.39 0.52 0.65 
3.12 4.30 5.54 6.73 

0.63 0.75 0.84 0.91 
0.26 0.36 0.48 0.60 
2.94 4.02 5.18 6.32 

0.64 0.75 0.84 0.90 
0.24 0.34 0.45 0.56 
2.79 3.78 4.87 5.96 

0.73 0.79 0.84 0.89 
0.12 0.16 0.21  0.25 
1.80 2.22 2.70 3.24 

0.86 0.89 0.91 0.93 
0.05 0.07 0.08 0.10 
1.32   1.4;'-   1.66  l.ii'/ 

15 

0.56 0.72 0.84 0.92 
0.27 0.41  0.56 0.70 
4.37 6.47 8.69 10.74 

0.56 0.70 0.82 0.90 
0.25 0.37 0.51 0.64 
3.99 5.86 7.91 0.90 

0.55 0.69 0.81 0.89 
0.22 0.34 0.46 0.59 
3.70 5.38 7.26 9.16 

0.55 0.68 0.79 0.88 
0.21  0.31  0.42 0.55 
3.46 4.99 6.73 8.52 

0.56 0.68 0.79 0.87 
0.19 0.28 0.39 0.51 
3.27 4.66 6.27 7.97 

0.66 0.73 0.79 0.85 
0.10 0.13 0.18 0.23 
2.02 2.59 3.26 4.04 

0.81   0.85 0.88 0.91 
0.04  0.06 0.07 0.09 
1.4:!   l.G')   1.90 2.y{) 

For values of n > 60, the values  in the above table were computed by using 

the normal  approximations given in   (8). 
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k=10 

10.0 r '  
1.0 

80 

6.0 

ES{n) 

4.0 

2.0 

•I-.. 
.931 

.737 

0.0 

788 .736 .697 

1 1 
0 10 20 30 

SampleSize(n) 
40 50 

Figure 1. Expected size of selected subset for p = .90, 8 = .03, d = 2, and k = 3,5,10. Inserted 
numbers are probability of a correct selection with 6=0 and p = .90. 
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FiguriB 2, Expected size of selected subset for p = .75, 6 = .05 and k = 3 (top), k = 5 (middle) 
and k = 10 (bottom). 
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Figure 3. Expected size of selected subset for p = .90, 8 - .03 and k = 3 (top), k = 5 (middle, and 
k= 10 (bottom). 
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